The graphs (a) through (e) in Figure N6–18 show the velocities of five cars moving along an east-west road (the x-axis) at time t, where $0 \le t \le 6$. In each graph the scales on the two axes are the same.

FIGURE N6-18

Which graph shows the car

- (1) with constant acceleration?
- (2) with the greatest initial acceleration?
- (3) back at its starting point when t = 6?
- (4) that is furthest from its starting point at t = 6?
- (5) with the greatest average velocity?
- (6) with the least average velocity?
- (7) farthest to the left of its starting point when t = 6?

The graph in Figure N6–20 shows the speed v(t) of a car in mph at 10-hour intervals during a one-hour period.

- (a) Give an
- estimate of the total distance traveled.
- (b) When does the acceleration appear greatest?
- (c) Estimate the acceleration when t = 20.
- (d) Estimate the average speed of the car during the interval $30 \le t \le 50$.

FIGURE N6-20

The graph shown is for Questions 5 and 6. It shows the velocity of an object during the interval $0 \le t \le 9$.

5. The object attains its greatest speed at t =

(A) 2

- **(B)** 3
- (C) 5
- **(D)** 6
- (\mathbf{E}) 8
- **6.** The object was at the origin at t = 3. It returned to the origin

(A) at t = 5

- **(B)** at t = 6
- (C) during 6 < t < 7

(D) at t = 7

(E) during 7 < t < 8

The graph is for Questions 65 through 67. It shows the velocity, in ft/sec, for of an object moving along a straight line, 0 < t < 8

65. The object's average speed (in ft/sec) for this eight-second interval was

(A) 0

- **(B)** $\frac{3}{8}$
- **(C)** 1
- **(D)** $\frac{8}{3}$
- **(E)** 8
- **66.** When did the object return to the position it occupied at t = 2?

(A) t = 4

- **(B)** t = 5
- (C) t = 6
- **(D)** t = 8
- 67. The object's average acceleration (in ft/sec2) for this 8-second interval was

(A) -2

- **(C)** 0
- **(D)** $\frac{1}{4}$
- **(E)** 1

No calculator is allowed for these problems.

- 4. A squirrel starts at building A at time t = 0 and travels along a straight, horizontal wire connected to building B. For $0 \le t \le 18$, the squirrel's velocity is modeled by the piecewise-linear function defined by the graph above.
 - (a) At what times in the interval 0 < t < 18, if any, does the squirrel change direction? Give a reason for your answer.
 - (b) At what time in the interval $0 \le t \le 18$ is the squirrel farthest from building A? How far from building A is the squirrel at that time?
 - (c) Find the total distance the squirrel travels during the time interval $0 \le t \le 18$.
 - (d) Write expressions for the squirrel's acceleration a(t), velocity v(t), and distance x(t) from building A that are valid for the time interval 7 < t < 10.